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1. Introduction

The seminal work of Munier and Peschanski [1] established a solid link between high energy

QCD evolution and the physics of statistical mechanics systems. In that and ensuing

works [2, 3], the connection between the Balitsky-Kovchegov (BK) equation [4, 5] and the

Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation [6,7], used to describe the time

evolution of certain quantities in some statistical mechanics systems, was exploited to give

a general and elegant derivation of the energy dependence of the saturation scale and of

geometric scaling [8, 9].

The BK equation is the mean field limit of the more general set of evolution equations

— the B-JIMWLK1 equations [4, 10–16] — describing the evolution of QCD scattering

amplitudes at high energy, i.e. the dynamics of the Colour Glass Condensate (CGC). Most

studies of high energy QCD evolution have been performed using the BK equation. The

reasons behind such preference are clear. Not only is the BK equation considerably more

tractable than the B-JIMWLK set, but also the differences between the full B-JIMWLK

evolution scheme and its truncated BK version are, perhaps surprisingly, small. The de-

tailed numerical evaluation of these differences was performed in [17] by recasting the full

evolution as a random walk in some functional space, once again highlighting the possible

deep connection between QCD evolution and statistical mechanics.

The B-JIMWLK evolution equations were derived under the explicit assumption of the

scattering of a dilute projectile on a dense target and should, therefore, be applicable only

1Balitsky-Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner.
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for that physical situation. Such a limitation renders the CGC framework — either in its

simplified BK version or for the more complete B-JIMWLK set — insufficient to address

the experimentally important collisions of two nuclei. From a more theoretical perspective,

this incompleteness of B-JIMWLK has been shown to eventually lead to the violation of

unitary constraints [18,19].

The inclusion of the missing ingredients — variously referred to as pomeron loops,

fluctuations or wave function saturation effects — in an extended B-JIMWLK scheme has

been attempted by several groups. A rather stringent constraint on the form of the complete

evolution is imposed by what has been called the Dense-dilute Duality (DdD) [20,21]. This

result, which establishes the equivalence of the dilute projectile, dense target case addressed

by B-JIMWLK and its mirror image of a dense projectile and a dilute target, implies that

the complete evolution kernel should necessarily be self-dual under the DdD.

Of particular relevance to the subject matter of this paper are those attempts [22–35]

to include the missing effects which resort to possible generalizations of the correspondence

of high energy QCD and statistical mechanics beyond the proven instance of [1]. It has

been argued [22] that the incompleteness of B-JIMWLK can be related to the breakdown

of the FKPP description in systems involving a small number of objects. Thus, a powerful

tool for the generalization of B-JIMWLK could be provided by insights from statistical

mechanics systems where the discreteness effects that violate the FKPP description can be

accounted for via the inclusion of stochastic effects.

In the context of statistical mechanics systems, the failing FKPP description is reme-

died by the inclusion of a stochastic (noise) term accounting for the effects of number

fluctuations which become increasingly important with decreasing number of intervening

objects. Different choices for the stochastic term to be added to the FKPP equation will,

in general, lead to different dynamical behaviours. The choice of the noise term is thus

a crucial step in obtaining a suitable description of high energy QCD evolution in the

framework of stochastic processes.

In general, there are two alternative strategies that can be followed to determine the

form of the noise term. One can attempt to extend the known B-JIMWLK evolution

equations by including the missing effects and then interpret the resulting equations in the

stochastic language. This approach was followed in [25,28] where the obtained noise terms

were, unfortunately, far too complex to allow any computation — analytical or numerical

— to be carried out. Instead, one can choose to make an educated guess as to what the

noise should be. Ultimately, for any such choice, the behaviour of the resulting Langevin

equation will need to be compared with our general expectations for high energy evolution.

In this paper we follow this latter strategy.

Our analysis is performed in the general framework of reaction-diffusion processes, in

particular in the Hamiltonian language of [36], which is equivalent to the formulation in

terms of Langevin equations. A Langevin equation in which the stochastic term is such that

the functional form of the two-point noise correlation function replicates that of the non-

diffusive part of the FKPP equation is usually referred to as the stochastic FKPP (sFKPP)

equation and describes the dynamics of a reaction-diffusion process belonging [38] to the

universality class of the reversible processes. If the noise is chosen to have a two-point
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correlator simply proportional to the quantity obeying the FKPP equation, the resulting

Langevin equation belongs to a different universality class, that of directed percolation (for

a comprehensive review see [37]). Although other choices for the form of the stochastic

term are certainly possible, we concentrate on these two since they have been previously

considered as possible descriptions of high energy QCD in the framework of stochastic

processes.

We explore numerically the universality classes of reaction-diffusion processes with

zero transverse dimensions. The Hamiltonian approach of [36] allows us to address both

reversible processes and directed percolation universality classes within a single formula-

tion. Further, the same formulation is well suited to enable a discussion of Reggeon Field

Theory — both in its original form and with the extra quartic vertex recently considered

in the context of high energy QCD evolution [34,39] — which, although related to directed

percolation [40], does not correspond to a well defined reaction-diffusion process. Finally,

it also allows for a rather straightforward heuristic introduction of ‘running coupling ef-

fects’. Zero-dimensional toy models are thus used as a test bed for the far more involved

realistic case with two transverse dimensions. By comparing the dynamical behaviour of

the reaction-diffusion models with general expectations for high energy QCD evolution —

geometrical scaling in BK, increase of the scattering amplitude with increasing rapidity,

slowdown of evolution once couplings are allowed to run, diffusive scaling once stochastic

effects are included — we narrow down the number of possible candidate models. The

central result of this paper is that, at least in relation to toy models with zero transverse

dimensions, the only universality class of reaction-diffusion processes compatible with high

energy QCD evolution is that of reversible processes.

A word of caution is in order: high-energy QCD dynamics occurs in two transverse

dimensions, so some features of our study may not correspond to the physical situation.

Indeed, for the case of the reversible processes that we will study below, with critical

dimension 2, the 0-dimensional case could not be a realistic approximation to high-energy

QCD. Nevertheless, the simplicity of 0-dimensional models makes it possible to examine a

wide variety of universality classes both exactly and approximately, and implement several

variations in the models. So we find it worth to see which consequences can be extracted

from 0-dimensional models with different reaction pieces, both to see their limitations as

toy models and to compare the impact of some heuristic modifications with recent works

in the literature. We hope that the conclusions extracted here in the restricted frame of

0-dimensional models, may be of help to constraint the eventual relation between QCD

and reaction-diffusion processes.

In section 2 we introduce the formalism of [36], the toy models to be studied, an

heuristic implementation of running of the couplings, and the classical solution of the

problem. Our results are presented in section 3 and a concluding discussion in section 4.

2. Formalism

In this section we start by presenting the basic formalism that will be used to discuss the

different classes of reaction-diffusion models. Then we motivate a choice of parameters
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in the models, discuss an heuristic introduction of the running of the couplings, and the

classical solutions to the problem.

2.1 Basic setup

We use the formalism developed in [36]. In this reference, the diffusive term in a stochastic

equation plays the role of a kinetic term in a Hamiltonian formulation, while the details

of the process are encoded in a reaction Hamiltonian which corresponds to a potential.

Following the notation of [36], the reaction Hamiltonian for an elementary reaction kA
λ
→

mA, where λ is the strength of the reaction, reads

HR(p̄, q̄) =
λ

k!
(p̄m

− p̄k)q̄k , (2.1)

with [q̄, p̄] = 1.

Instead of discussing arbitrary cases, we focus in this paper in Hamiltonians with two

powers of q̄ at most. While higher vertices might be required by an eventual ‘true’ theory of

high energy QCD, we restrict to this form which contains the vertices most often discussed

in the literature. To pass to a more usual notation, we make the changes p̄ → −q, q̄ → p,

HR → −H, arriving at

H(p, q) = α1pq − α2qp
2
− α3q

2p + α4q
2p2 . (2.2)

This expression corresponds to the Hamiltonian which rules, for reactions involving vertices

up to fourth order, the evolution in rapidity y (the logarithm of the energy) of an auxiliary

function F (y, q) [39],
∂F (y, q)

∂y
= −H(p, q)F (y, q) . (2.3)

The evolution starts from some functional form for the coupling to the projectile at y = 0,

e.g. an eikonal coupling

F (y = 0, q) = 1 − exp (−giq) , (2.4)

where gi is the coupling parameter with the projectile. The relation with the transition

amplitude Afi(y) is given through

iAfi(y) = F (y, q = gf ) , (2.5)

where gf is the coupling parameter with the target.

At this point a relation between the variable q and the dipole size can be argued. The

dipole scattering amplitude on a hadronic target is known to increase monotonically with

increasing dipole size. We assume in this study that the models that we are examining

describe in a simplified manner the dynamics of fixed transverse size dipoles. In this

way, the coupling to the target in (2.5), and thus the value of q, acquires a one-to-one

correspondence with the dipole size. It is within this correspondence that we will introduce

q as the scale for a running of the couplings in Subsection 2.3 and confront the results of the

evolution of function F (y, q) with the general expectation in QCD of increasing scattering

amplitude with increasing dipole size.
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In (2.2) the variable p plays the role of a conjugate variable to q, p = −∂/∂q ≡ −∂q.

It is, in the formalism of [36], the auxiliary degree of freedom required to study the non-

equilibrium problem (for other approaches see [41–44]). Further, q(p) can be interpreted

as the creation (annihilation) operator of the objects exchanged in the scattering. Within

this interpretation, the property of the Hamiltonian (2.2),

H(p, ∂p) = Hy→−y

(

α3

α2

q,−
α2

α3

∂q

)

, (2.6)

amounts to a symmetry of the scattering process from the projectile and target points of

view. This symmetry is strongly suggestive of the Dense-dilute Duality which has been

postulated [20] to be an essential property of high energy QCD evolution Hamiltonians.

The phase portrait of the different reaction-diffusion processes, defined by the zero

energy trajectories, HR(p̄, q̄) = 0, plays an important role in their classification into uni-

versality classes. More specifically, in [36] a classification of reaction-diffusion processes is

proposed on the basis of the shape of the phase portrait. In this way, those processes whose

phase portraits can be deformed into each other, would belong to the same universality

class. Following this idea, in this work we will focus in the following cases:

1. Reggeon Field Theory (RFT): α4 = 0, α2 = α3. It contains no quartic vertex and

the splitting and recombination strengths are equal. It has no correspondence to a

reaction-diffusion process, and it displays the known phenomenon that the amplitude

vanishes with increasing rapidity which is usually interpreted as tunneling [45–47].

The effect of the quartic vertex has been examined recently [34] due to its possi-

ble connection to high energy QCD evolution. The zero energy lines determine a

triangular phase portrait given by (see figure 1):

p̄ = 0, q̄ = 0, q̄ =
α1

α2

+ p̄ . (2.7)

2. Directed Percolation (DP): it is the case for the stochastic process with allowed

reactions 1
λ
→ 0, 1

µ
→ 2 and 2

2σ
→ 1, leading to α1 = µ − λ, α3 = µ and α2 = α4 = σ.

It contains a quartic vertex with the same strength as the recombination vertex, and

its phase portrait is determined by (see figure 2):

p̄ = 0, q̄ = 0, q̄ =
α1 + α3p̄

α2(1 + p̄)
. (2.8)

Renormalization group arguments lead to the conclusion that the quartic vertex is

irrelevant at dimensions greater than 4 (see e.g. [48]). On the other hand, the third

trajectory in (2.8) goes into a straight line when expanded around p̄ = 0

q̄ ≃
µ − λ

σ
+

µσ(1 + p̄) − [(µ − λ) + µp̄]σ

σ2(1 + p̄)2

∣

∣

∣

∣

p̄=0

p̄ =
µ − λ

σ
+

λ

σ
p̄ . (2.9)

In both cases one returns to RFT, a fact that we will use below to fix the parameters

for our numerical study.
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Figure 1: Phase portrait of RFT.

Figure 2: Phase portrait of DP.

3. Reversible processes (RP): it is the case for the stochastic process with reactions

1
µ
→ 2 and 2

2σ
→ 1, leading to α1 = α3 = µ and α2 = α4 = σ. It contains a quartic

vertex with the same strength as the recombination vertex and its phase portrait is

determined by (see figure 3):

p̄ = 0, q̄ = 0, p̄ = −1, q̄ =
α1

α2

. (2.10)

This phase portrait cannot be deformed to a triangle and it does, therefore, belong to

a different universality class than that of DP. The Langevin equation corresponding
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Figure 3: Phase portrait of RP.

to this reaction-difussion problem is the stochastic Fisher-Kolmogorov-Petrovsky-Pis-

counov (see recent analyses in [49, 50]), which has been proposed to play a role in

high energy QCD evolution beyond JIMWLK [23,25,27,35].

2.2 Choice of parameters

Instead of scanning a large region of the parameter space, we focus on the effect of the

quartic vertex and of the difference between different reaction-diffusion processes. Thus,

for RFT we choose values α1 = 1 (this parameter can always be absorbed in a redefinition

of rapidity) and α2 = α3 = 0.5. We have checked that with this set of parameters the

conclusions we extract by numerically solving the evolution equation (2.3) in a restricted

rapidity window 0 < y < 5 hold for higher rapidities and are not a ‘subasymptotic’ effect, a

situation which may happen for smaller values of α2 = α3 [39]. Besides, we will generically

study the introduction of a quartic vertex in RFT as done in [34] though this situation, as

RFT itself in zero dimensions, does not correspond to any reaction-diffusion process.

For DP we adopt the following strategy: we approximate the phase portrait (2.8) by a

triangle — see (2.9) — which brings DP into RFT with a given quartic vertex, and identify

the parameters with those in the phase portrait of RFT (2.7). This leads to the values

α1 = 1, α2 = α4 = 0.5 and α3 = 1.5.

Finally, for RP we take α1 = α3 = 1 and vary the remaining parameter in the region

0.1 < α2 = α4 < 0.9.

At this point it is tempting to try to establish some relation between the four param-

eters in the reaction-diffusion models that we consider and QCD parameters. However,

– 7 –
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such an identification depends on the degrees of freedom, presently unknown, which could

eventually make it possible to identify high-energy QCD with a reaction-diffusion process.

Were the relevant QCD degrees of freedom dipoles, the proportionality, in RP, of couplings

1 and 3 to αs and of couplings 2 and 4 to α2
s, would be tempting. But in the dipole model

the quartic vertex is parametrically suppressed by the number of colours, therefore prevent-

ing such a relation. Thus, we prefer to restrict ourselves to the RFT situation, where the

four couplings are of the same order, and a comparison of the results of the evolution of the

three models (RFT, DP and RP) is possible and given solely by their different properties

as reaction-diffusion processes.

2.3 Running of the couplings

All couplings in these reaction-difussion processes are, at this level, fixed. Recently it has

been proposed in the framework of a one-dimensional model, that effects of the running

of the couplings may shift the contribution of effects of loops to higher rapidities [51]. To

implement the running of the coupling in our approach we adopt an heuristic procedure. We

interpret 1/q as some ‘momentum’ scale which determines a common logarithmic running

for the four couplings in our Hamiltonian2:

αi(q) = αi
ln (Q/q)

ln (q0/q)
, i = 1, . . . , 4 , (2.11)

for q < q0 and frozen to the values αi discussed in the previous Subsection for q ≥ q0.

Q = 10 q0 plays the role of an inverse QCD scale, and we take two values of q0 = 0.5 and 1.

These choices are motivated by the need of making the effect of the running of the coupling

noticeable in the restricted region of q we explore numerically.

2.4 Classical solutions

The Hamiltonian problem admits a classical solution:

ṗ = (−α1 + α2p)p + 2(α3 − α4p)qp , (2.12)

q̇ = (α1 − 2α2p)q + (−α3 + 2α4p)q2 ,

with initial conditions

q(y = 0) = gi, p(y = Y ) = gf , (2.13)

where Y is the total rapidity spanned between the projectile located at y = 0 and the

target located at y = Y . Thus, the classical amplitude, i.e. the amplitude at tree level, can

be computed standardly [47,53]:

iAclas

fi (y) = 1 +
∑

k

∆k exp [−S(Y, qk, pk)] , (2.14)

2As discussed below (2.5) we identify the amplitude with that for the scattering of a dipole of size ∝ q,

which is known to increase with increasing dipole size. Previous experience with running coupling effects

in the BK equation [52] give us the hope that the concrete choice of scale will not alter the qualitative

conclusions of this study.
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with the index k running over all possible solutions of the classical equations of mo-

tion (2.12)3, ∆k = ±1 and S(Y, qk, pk) the action evaluated for the classical solutions.

3. Results

We begin this section with a description of the numerical method used to compute the

transition amplitude. Following that, we study the rapidity evolution of the solutions

for the fan case, RFT, DP and RP. Additionally, we examine the effects of an heuristic

introduction of running of the couplings. Further, we phrase the effects of evolution in

terms of a saturation scale. Finally, we compare the results of quantum and classical

evolution.

3.1 Numerical method

To solve the differential equation (2.3) with evolution kernel (2.2) and initial conditions (2.4)

which defines the quantum mechanical problem, we use a second order Runge-Kutta

method. We have discretized the q-range in 500 points per unit which showed to be

enough for a precision better than a few percent. The rapidity region studied is

0 ≤ y ≤ 5 (3.1)

(though we study values as high as 40 when comparing with the classical solution). The

step in rapidity is correlated with the step in q [39]; we have used h = 6.25 ·10−6 . With this

numerical method we obtain the values of Fi(y, q) in a q interval for different rapidities.

The results depends also on the coupling constants: we use gi = 1 [39].

The solution to the classical equations of motion (2.12) with initial conditions (2.13)

was obtained using the shooting method. After the classical trajectories were computed,

the amplitude was calculated through (2.14) (the corresponding quantum expression is

given by (2.5)).

3.2 Numerical results

We focus on the rapidity evolution of the solutions, confronting the results with the ex-

pectations coming from the correspondence of the variable q with a dipole size, as argued

below (2.5)).

(a) fan case

First, as a check, we study the so-called fan case [54] in which there are no re-

combination terms, from the projectile point of view, in the Hamiltonian (2.2), i.e.

α2 = α4 = 0. The differential equation admits an analytical solution

Ffan(y, q) = 1 − exp

[

−
giqe

α1y

1 + qα3

α1
(eα1y − 1)

]

. (3.2)

3Three solutions, one symmetric (∆k = +1) between projectile and target and two asymmetric (∆k =

−1), appear above some critical rapidity whose value depends on the chosen initial conditions, see a recent

discussion in [53].
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lines: numerical solution

points: analytical solution

Figure 4: Comparison of the analytical (symbols) and numerical results (lines) for the fan case,

with gi = 1.

We use this analytical result to perform a check of our numerical solution. As we

can see in figure 4 there is a very good agreement between the analytical and the

numerical results. Note that the BK equation sums the corresponding fan diagrams

for BFKL pomerons [55], leading a behaviour similar to what we found in this simple

zero-dimensional case.

(b) RFT

Now we turn to RFT — figure 5 — which contains no quartic vertex. In the limit of

high rapidity we find an exponential decay, a behaviour already found in [34,39] and

interpreted as a tunneling phenomenon [45–47].

(c) DP

The third case we study is DP, with the parameters fixed as discussed in Subsec-

tion 2.2. What we find, figure 6, is that the evolution goes in the opposite direction

to what is expected in high energy evolution, i.e. that the function moves to smaller

values of q with increasing rapidity 4. This poses serious doubts on DP as a candidate

for a description of high energy QCD evolution.

(d) RP

Finally we turn to RP. As we see in figure 7 (left), the evolution leads the front

towards smaller values of q as we increase the value of rapidity. So it behaves in the

expected manner for high energy QCD evolution. The parameters α2,4, characterizing

4Our choice of parameters makes this behaviour visible in the y-range we study. Smaller values of α2,3,4

make it noticeable only for larger values of y.
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Figure 5: Rapidity evolution of the solutions in the case of RFT.
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Figure 6: Rapidity evolution of the solutions in the case of DP.

respectively the vertices 2 → 1 and 2 → 2, are free. We find that increasing α2 = α4

makes the evolution softer — figure 7 (right) –, again as expected for high energy

evolution.

(e) running coupling

Now we turn to our heuristic implementation of the running of the couplings. In

figure 8 we show the results for the fan case and for RP — the two cases where the
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Figure 7: Rapidity evolution of the solutions in the case of RP for α2 = α4 = 0.3 (left). Solutions

of RP for different values of α2 = α4 , at y = 5 (right).

evolution goes in the expected direction — for the different freezing points for the

coupling discussed in subsection 2.3. The evolution is clearly slowed down with the

effect of the frozen procedure being more noticeable at the beginning of the evolution.

(f) saturation scale

To ensure that the effects of evolution in each case are more easily visible, we parallel

the studies of the BK equation and introduce a ‘saturation scale’ 1/qs(y), defined

through the equation

F (y, qs(y)) = κ , (3.3)
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Figure 8: Evolution of Fi(y, q) for given values of rapidity, comparing the behaviour with fixed

(FC) and running (RC) couplings. Fan case (left). RP (right).

with κ some fixed value of order 1/2. It is known [52] that the specific choice of

the value of κ leads to small changes in the leading y-behaviour of the saturation

scale which, for the purposes of this study, are entirely negligible. In figure 9 we

show the ‘saturation scale’ obtained for the fan case, for DP and for RP. In the fan

case, the running of the couplings slows down the increase of 1/qs(y) (as in the BK

equation). In DP 1/qs(y) diminishes with increasing rapidity. Finally, in RP both

the increase of the strengths of the vertices 2 → 1 and 2 → 2 and the running of the

couplings slow down the increase of 1/qs(y) — a behaviour which may be linked with

the findings in [51] of a competition between the effects of recombination vertices,

called ‘Pomeron loops’, and of running coupling.

(g) classical solution

Finally, we want to compare the full quantum and the symmetrical classical solutions,

see Subsection 2.4. This provides an evaluation of the effect of loops in the strict

Quantum Field Theory sense. In figure 10 we show both the classical and quantum

imaginary parts of the amplitude for RFT with a quartic vertex, for different values of

gi = gf . The classical solution lies always above the quantum one, with the difference

between both increasing with increasing rapidity. Similar conclusions are extracted

in other cases.

4. Conclusions

In this paper we have examined numerically several reaction-diffusion processes in zero

transverse dimensions as possible candidates for a toy model of high-energy QCD evolution.

– 13 –
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We have restricted ourselves to those models in which the Hamiltonian formulation [36]

contain vertices with up to two derivatives: diffusion, splitting, recombination and 2 → 2,

which allows a discussion of all common universality classes. We have also considered usual

variants of such models which are not strictly reaction-diffusion processes. Their feasibility

as toy models for high-energy QCD evolution has been evaluated in terms of the direction

of the evolution with increasing evolution parameter, that is increasing rapidity.

In the case of Reggeon Field Theory, which contains no quartic vertex and thus has

no reaction-diffusion interpretation, we find the known behaviour of a vanishing amplitude

– 14 –



J
H
E
P
0
5
(
2
0
0
8
)
1
0
3

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  5  10  15  20  25  30  35  40

iA

Y

α1=1, α2=α3=0.2, α4=0.04

classical solution q1(0)=q2(Y)=0.1

our model (gi=0.1)  0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  5  10  15  20  25  30  35  40

iA

Y

α1=1, α2=α3=0.2, α4=0.04

classical solution q1(0)=q2(Y)=0.2

our model (gi=0.2)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  5  10  15  20  25

iA

Y

α1=1, α2=α3=0.2, α4=0.04

classical solution q1(0)=q2(Y)=1

our model (gi=1)

Figure 10: The classical symmetrical (dashed lines) and the quantum (solid line) imaginary part

of the amplitude versus y. gi = gf = 0.1 (top left). gi = gf = 0.2 (top right). gi = gf = 1 (bottom).

with increasing rapidity. Directed Percolation leads to a behaviour of the solutions de-

creasing with increasing rapidity. On the other hand, the limiting case of considering only

fan diagrams (again with no reaction-diffusion counterpart) and Reversible Processes show

solutions which increase with increasing rapidity. In the case of RP which, as DP, contains

a quartic vertex, the evolution is slowed down by increasing the recombination and 2 → 2

vertices. We have shown all these behaviours both at the level of the amplitudes and of an

analogue of a saturation momentum.

We have also introduced, in an heuristic manner, a running of the couplings, which

tends to slow down the evolution in all cases, working in the same direction as the increase
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of the recombination and 2 → 2 vertices as found in [51]. Finally, we have numerically

computed the classical solutions (those which sum tree diagrams), and found that they

generically lie above the quantum ones, with their difference growing with increasing ra-

pidity, so quantum effects tend to slow down the evolution.

Summarizing, we have found that the only zero-dimensional reaction-diffusion process

which shows a behaviour of the amplitude in agreement with the expectations from high

energy QCD with rapidity is RP. This process is linked with sFKPP equation often used

to discuss [23,25,27,35] high-energy QCD evolution. Increasing recombinations terms, and

the inclusion of quantum loops and of a running of the coupling generically slow down the

evolution.

The analysis of reaction-diffusion processes in zero transverse dimensions presented in

this paper serves as a basis for future analogous studies involving a number of dimensions

larger than zero, in particular for the two transverse dimension case relevant for QCD.

In zero dimensions reaction-diffusion processes are purely reactive (i.e., the diffusion term

is absent). The presence of a diffusion term — be it the full BFKL kernel as relevant

for QCD or a ’toy’ one dimensional kernel — will lead to changes of the evolution trends

established in this work. For particular choices of the reaction part of the process, the

diffusive term will lead to the appearance of a limiting maximal noise (in our language, a

limiting value for the couplings) at which the evolution will cease. This situation has been

recently examined in [56]. Future work will examine the behaviour of reaction-diffusion

processes with a realistic BFKL diffusive kernel.
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